
ORNL is managed by UT-Battelle LLC for the US Department of Energy

The Frontier Programming Environment at
OLCF

Wael Elwasif

Frontier Programming Environment Task Lead
Oak Ridge Leadership Computing Facility

Oak Ridge National Laboratory

Overview

3

Contributors to Frontier Programming Environment

Vendor-Provided

• Cray Programming Environment (CPE)

– Includes Cray compiler for C, C++, and
Fortran plus GCC compiler. All the Cray
profiling, tuning, and debugging tools.
OpenMP and Cray MPI optimized for AMD
GPU direct.

• AMD ROCm programming environment

– Includes LLVM compiler to generate optimized
code for both the AMD Trento CPU and
MI250X GPU.

– Support: C, C++, and Fortran and have GPU
offload support. HIP, a CUDA-like direct GPU
programming model (with CUDA to HIP
conversion utilities).

Other Sources

• ECP

– LLVM enhancements: Flang (Fortran front-
end), OpenMP, OpenACC

– Kokkos and RAJA

– HIP LZ (HIP support for Aurora)

– MPI, HPCToolkit, PAPI enhancements

– …

• ALCF + OLCF

– Pilot implementation of DPC++/SYCL for
Frontier

• OLCF

– GCC enhancements to better support
OpenACC, OpenMP, Fortran on Summit and
Frontier

4

Programming Environment

• Compilers Offered

– Cray PE (C/C++ LLVM-based; Cray Fortran)

– AMD ROCm (LLVM-based)

– GCC

• Programming Languages & Models Supported (in which compilers)

– C, C++, Fortran (all)

– OpenACC (Cray Fortran OpenACC 2.0+ & GCC 2.6 substantially complete, 2.7 planned)

– OpenMP (all) 5.0-5.2 in progress – most priority features complete, details vary

– HIP (Cray, AMD)

– Kokkos/RAJA (all)

– UPC (Cray, GCC)

• Transition Paths

– CUDA: semi-automatic translation to HIP

– CUDA Fortran: HIP kernels called from Fortran (a more portable approach)
o CUDA Fortran kernels need to be translated to C++/HIP (manual process)
o Fortran bindings to HIP and ROCm libraries and HIP runtime available through AMD’s hipfort project

Items in green are also
available on Summit

5

Programming Tools

Debuggers and Correctness Tools

Tool

System-Level Tools

Arm DDT

Cray CCDB

Cray ATP

STAT

Node-Level Tools

ROCgdb

Cray GDB4HPC

Performance Tools

Tool

System-Level Tools

Arm MAP/Performance Reports

CrayPat/Apprentice2 (Cray)

Reveal (Cray)

TAU

HPCToolkit

Score-P / VAMPIR

Node-Level Tools

gprof

PAPI

ROCprof

ROC-profiler & ROC-tracer libraries

Items in green are also
available on Summit

6

Scientific Libraries and Tools

Functionality CPU GPU Notes

BLAS Cray LibSci, AMD BLIS,

PLASMA

Cray LibSci_ACC, AMD

roc/hipBLAS, AMD rocAMD ROCm

Tensile, MAGMA

MAGMA and PLASMA are open

source software led by the UTK

Innovative Computing Laboratory

LAPACK Cray LibSci, AMD

libFlame, PLASMA

Cray LibSci_ACC, AMD

roc/hipSolver, MAGMA

ScaLAPACK Cray LibSci ECP SLATE, Cray LibSci_ACC

Sparse AMD roc/hipSparse, AMD

rocALUTION

Mixed-precision

iterative refinement

Cray IRT, MAGMA MAGMA

FFTW or similar Cray, AMD, ECP FFTX,

FFT-ECP

AMD rocFFT, ECP FFTX, FFT-ECP FFT-ECP focuses on 3D FFTs

PETSc, Trilinos,

HYPRE, SUNDIALS,

SuperLU

Spack recipes from ECP xSDK

Functionality in green is
also available on Summit

Digging a Little Deeper

8

For C/C++ Codes

• Multiple compilers available

– AMD

– Cray

– LLVM

• But they’re all based on LLVM

– HPE and AMD are among the many organizations contributing to the
development of LLVM

– Most work is “upstreamed” (contributed to the core LLVM source)

o But not everything is accepted (immediately), or may be held back as proprietary

– Capabilities (and bugs) are likely to be generally similar at any point in time…

– But not identical!

• LLVM is also available on Summit

9

Upstream LLVM @ OLCF

• Summit:

– OLCF deployed modules (with offloading): latest llvm/14.0.0

– Periodic main snapshots :
module use /sw/summit/modulefiles/ums/stf010/Core
module load llvm/17.0.0-latest # Also from specific dates

• Crusher:

– Periodic main snapshots (maintained by the ECP SOLLVE project)
module use /sw/crusher/ums/ums012/modules
module load llvm/17.0.0-20230213 # Also from other dates

• Frontier :

– TBD

10

For Fortran Codes

• One useful compiler available at present

– Cray

o Not based on LLVM

• AMD provides a Fortran implementation, but we don’t recommend it

– It is based on “classic Flang”, in the LLVM ecosystem

– Support for both the latest language standards and OpenMP offload are
limited

• There is extensive work underway in the LLVM community on Flang,
but it will be some time before it is production quality

11

But What About GCC?

• On this slide “GCC” refers to the whole suite, including gfortran

– With support for offloading using OpenMP/OpenACC

• OLCF is working with Siemens to implement OpenMP in GCC

• OLCF will provide recent release and development versions of GCC on Frontier

• For various reasons, you should not expect gcc-generated executables to be
performant for offload at this time

– Results will vary

– We are interested in improving the performance of gcc. If you have a troublesome case,
reach out to me. (No guarantees, however)

• GCC is also available on Summit

12

GCC+offloading

• Summit:

– OLCF deployed modules (with offloading): latest gcc/12.1.0

– Periodic development snapshots :
module use /sw/summit/modulefiles/ums/stf010/Core
module load gcc/12.2.1-latest # Also from specific dates

• Crusher:

– Periodic development snapshots
module use /sw/crusher/ums/compilers/modulefiles
module load gcc/12.2.1-latest # Also from specific dates

• Frontier :

– TBD

13

For HIP (and CUDA) Codes

• HIP runs today on AMD and NVIDIA GPUs

• An ECP project is working on supporting HIP on Intel GPUs

• Recommend a one-time translation of CUDA codes
to HIP and make the HIP version primary from then on

• Both Cray and AMD compilers support HIP

– They both use the AMD runtime

• More on HIP available in the OLCF Training Archive

• HIP is also available on Summit

- AMD provides tools to translate CUDA to HIP

- hipify-perl and hipify-clang
- Not fully automatic

- hipfort
- https://github.com/ROCmSoftwarePlatform/h

ipfort

- Fortran bindings to HIP and ROCm libraries

and HIP runtime

- Build depends on ROCm version & Fortran

compiler used

- Related: SYCLomatic - Intel tool to translate

CUDA to Sycl

- https://github.com/oneapi-src/SYCLomatic

- Intel® DPC++ Compatibility Tool

- Not fully automatic

https://docs.olcf.ornl.gov/training/training_archive.html
https://github.com/ROCmSoftwarePlatform/hipfort
https://github.com/oneapi-src/SYCLomatic

14

For OpenMP Codes

• OpenMP is very much a work in progress in the LLVM community

– Most of 5.0 is implemented

– Parts of 5.1, 5.2 are implemented

• We (DOE labs, including ORNL/OLCF) are trying to help prioritize the order of
implementation based on what users tell us they need/want

– So if you could really use features that aren’t available yet, please let us know!

• Cray and AMD compilers use different OpenMP runtimes

• Remember that Cray Fortran is not based on LLVM

• OpenMP implementation in GCCis also a work in progress

• More on OpenMP available in the OLCF Training Archive

• OpenMP is available on Summit, but different progress on impl

https://docs.olcf.ornl.gov/training/training_archive.html

15

For OpenACC Codes
• Cray Fortran supports OpenACC 2.0+

– "CCE supports full OpenACC 2.0 and partial
OpenACC 2.x/3.x for Fortran (OpenACC is not
supported for C and C++)"

– Work is underway to 3.2 (latest)

o but no timeline has been given

• OLCF provides OpenACC support via GCC

– 2.6 currently supported --- 2.7 planned

– 3.x not currently planned – let us know if there are
particular features that you could really use

– Don’t expect this to be performant at present

• Work is also underway in the LLVM community on OpenACC

– Unknown when these will be production

• OpenACC is also available on Summit

CCE OpenACC 2.x/3.x features – CCE/15:

• atttach/detach behavior and clauses

• default(present) clause

• Implied present-or behavior for copy, copyin,

copyout, and create data clauses

• if_present clause on acc update
• if clause on acc wait
• async and wait clauses on acc data
• acc_attach and acc_attach_asyncAPIs

• finalize clause on exit data
• no_create clause on structured data and

compute constructs

• if clause on host_data

16

What about SYCL?

• OLCF and ALCF have partnered with Codeplay on a pilot implementation of the Intel DPC++
compiler for AMD GPUs

– ALCF has also partnered with NERSC on NVIDIA support

• Pilot implementation is complete

– ~“50%” level of support

– Tested with a small set of benchmarks and mini-apps

– Spock: module load ums ums015 dpcpp

– Crusher: module load dpcpp #dpcpp/22.09

• Seeking interested users to try out the pilot implementation

– Provide feedback

– Shake out issues

– Provide motivation to complete the port

17

Help Us Help You…

• If you have a liaison, work with them

• If you encounter an issue, file a ticket with OLCF – otherwise the
facility won’t (necessarily) know about it, and can’t track it

– Summit, Spock, Crusher, Frontier…

• Take advantage of training events like this one

– Preparing for Frontier series in the OLCF Training Archive

– If you have Crusher access: office hours, hackathons, additional trainings

https://docs.olcf.ornl.gov/training/training_archive.html

